Problem 1.14

Calculate the mass of a mole of dry air, which is a mixture of N_{2} (78% by volume), $\mathrm{O}_{2}(21 \%)$, and argon (1\%).
[TYPO: Replace "volume" with "pressure." The gaseous components all occupy the same volume.]

Solution

The Hard Way

The mass of a mole of dry air is the sum of the masses of dry air's components, assumed to be nitrogen $\left(\mathrm{N}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$, argon (Ar$)$, and carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

$$
m=\sum_{i} m_{i}=m_{\mathrm{N}_{2}}+m_{\mathrm{O}_{2}}+m_{\mathrm{Ar}}+m_{\mathrm{CO}_{2}}
$$

Mass is obtained by multiplying the number of moles by the molar mass.

$$
\begin{equation*}
m=\mathscr{M}_{\mathrm{N}_{2}} n_{\mathrm{N}_{2}}+\mathscr{M}_{\mathrm{O}_{2}} n_{\mathrm{O}_{2}}+\mathscr{M}_{\mathrm{Ar}} n_{\mathrm{Ar}}+\mathscr{M}_{\mathrm{CO}_{2}} n_{\mathrm{CO}_{2}} \tag{1}
\end{equation*}
$$

Assume that the dry air is an ideal gas mixture so that Dalton's law of partial pressures applies: The total pressure of a mixture of gases is the sum of the pressures that each gas would exert if it were present alone.

$$
P=P_{\mathrm{N}_{2}}+P_{\mathrm{O}_{2}}+P_{\mathrm{Ar}}+P_{\mathrm{CO}_{2}}
$$

As a result, the ideal gas law applied to the mixture

$$
\begin{equation*}
P V=n_{\text {total }} R T \quad \rightarrow \quad n_{\text {total }}=\frac{P V}{R T} \tag{2}
\end{equation*}
$$

becomes

$$
\begin{aligned}
\left(P_{\mathrm{N}_{2}}+P_{\mathrm{O}_{2}}+P_{\mathrm{Ar}}+P_{\mathrm{CO}_{2}}\right) V & =\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}+n_{\mathrm{Ar}}+n_{\mathrm{CO}_{2}}\right) R T \\
P_{\mathrm{N}_{2}} V+P_{\mathrm{O}_{2}} V+P_{\mathrm{Ar}} V+P_{\mathrm{CO}_{2}} V & =n_{\mathrm{N}_{2}} R T+n_{\mathrm{O}_{2}} R T+n_{\mathrm{Ar}^{2}} R T+n_{\mathrm{CO}_{2}} R T,
\end{aligned}
$$

which implies

$$
\left\{\begin{array} { c }
{ P _ { \mathrm { N } _ { 2 } } V = n _ { \mathrm { N } _ { 2 } } R T } \\
{ P _ { \mathrm { O } _ { 2 } } V = n _ { \mathrm { O } _ { 2 } } R T } \\
{ P _ { \mathrm { Ar } } V = n _ { \mathrm { Ar } } R T } \\
{ P _ { \mathrm { CO } _ { 2 } } V = n _ { \mathrm { CO } _ { 2 } } R T }
\end{array} \quad \rightarrow \left\{\begin{array}{l}
n_{\mathrm{N}_{2}}=\frac{P_{\mathrm{N}_{2}} V}{R T} \\
n_{\mathrm{O}_{2}}=\frac{P_{\mathrm{O}_{2}} V}{R T} \\
n_{\mathrm{Ar}}=\frac{P_{\mathrm{Ar}} V}{R T} \\
n_{\mathrm{CO}_{2}}=\frac{P_{\mathrm{CO}_{2}} V}{R T}
\end{array} .\right.\right.
$$

Plug these results into equation (1).

$$
m=\mathscr{M}_{\mathrm{N}_{2}}\left(\frac{P_{\mathrm{N}_{2}} V}{R T}\right)+\mathscr{M}_{\mathrm{O}_{2}}\left(\frac{P_{\mathrm{O}_{2}} V}{R T}\right)+\mathscr{M}_{\mathrm{Ar}}\left(\frac{P_{\mathrm{Ar}} V}{R T}\right)+\mathscr{M}_{\mathrm{CO}_{2}}\left(\frac{P_{\mathrm{CO}_{2}} V}{R T}\right)
$$

Divide both sides by $n_{\text {total }}$. Since there's just a mole of dry air, $n_{\text {total }}=1 \mathrm{~mol}$.

$$
\begin{align*}
\frac{m}{n_{\text {total }}} & =\frac{1}{n_{\text {total }}}\left[\mathscr{M}_{\mathrm{N}_{2}}\left(\frac{P_{\mathrm{N}_{2}} V}{R T}\right)+\mathscr{M}_{\mathrm{O}_{2}}\left(\frac{P_{\mathrm{O}_{2}} V}{R T}\right)+\mathscr{M}_{\mathrm{Ar}}\left(\frac{P_{\mathrm{Ar} V}}{R T}\right)+\mathscr{M}_{\mathrm{CO}_{2}}\left(\frac{P_{\mathrm{CO}_{2}} V}{R T}\right)\right] \\
\frac{m}{1 \mathrm{~mol}} & =\frac{R T}{P V}\left[\mathscr{M}_{\mathrm{N}_{2}}\left(\frac{P_{\mathrm{N}_{2}} V}{R T}\right)+\mathscr{M}_{\mathrm{O}_{2}}\left(\frac{P_{\mathrm{O}_{2}} V}{R T}\right)+\mathscr{M}_{\mathrm{Ar}}\left(\frac{\left.\left.P_{\mathrm{Ar} V}^{R T}\right)+\mathscr{M}_{\mathrm{CO}_{2}}\left(\frac{P_{\mathrm{CO}_{2}} V}{R T}\right)\right]}{}\right.\right. \\
& =\mathscr{M}_{\mathrm{N}_{2}}\left(\frac{P_{\mathrm{N}_{2}}}{P}\right)+\mathscr{M}_{\mathrm{O}_{2}}\left(\frac{P_{\mathrm{O}_{2}}}{P}\right)+\mathscr{M}_{\mathrm{Ar}}\left(\frac{P_{\mathrm{Ar}}}{P}\right)+\mathscr{M}_{\mathrm{CO}_{2}}\left(\frac{P_{\mathrm{CO}_{2}}}{P}\right) \tag{3}
\end{align*}
$$

Suppose that nitrogen, oxygen, argon, and carbon dioxide contribute $78 \%, 21 \%, 0.95 \%$, and 0.05% of the total pressure at sea level, respectively.

$$
\left\{\begin{array} { r }
{ P _ { \mathrm { N } _ { 2 } } = 0 . 7 8 P } \\
{ P _ { \mathrm { O } _ { 2 } } = 0 . 2 1 P } \\
{ P _ { \mathrm { Ar } } = 0 . 0 0 9 5 P } \\
{ P _ { \mathrm { CO } _ { 2 } } = 0 . 0 0 0 5 P }
\end{array} \quad \rightarrow \quad \left\{\begin{array}{l}
\frac{P_{\mathrm{N}_{2}}}{P}=0.78 \\
\frac{P_{\mathrm{O}_{2}}}{P}=0.21 \\
\frac{P_{\mathrm{Ar}}}{P}=0.0095 \\
\frac{P_{\mathrm{CO}_{2}}}{P}=0.0005
\end{array}\right.\right.
$$

Equation (3) then becomes

$$
\begin{aligned}
\frac{m}{1 \mathrm{~mol}} & =\mathscr{M}_{\mathrm{N}_{2}}(0.78)+\mathscr{M}_{\mathrm{O}_{2}}(0.21)+\mathscr{M}_{\mathrm{Ar}}(0.0095)+\mathscr{M}_{\mathrm{CO}_{2}}(0.0005) \\
= & \left(2 \times 14.00674 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)(0.78)+\left(2 \times 15.9994 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)(0.21) \\
& \quad+\left(39.948 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)(0.0095)+\left[(12.0107+2 \times 15.9994) \frac{\mathrm{g}}{\mathrm{~mol}}\right](0.0005) \\
\approx & 28.97 \frac{\mathrm{~g}}{\mathrm{~mol}} .
\end{aligned}
$$

Therefore, multiplying both sides by 1 mole, the mass of a mole of dry air is

$$
m \approx 28.97 \mathrm{~g} .
$$

The Easy Way

The mass of a mole of dry air is the sum of the masses of dry air's components, assumed to be nitrogen $\left(\mathrm{N}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$, argon (Ar), and carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

$$
m=\sum_{i} m_{i}=m_{\mathrm{N}_{2}}+m_{\mathrm{O}_{2}}+m_{\mathrm{Ar}}+m_{\mathrm{CO}_{2}}
$$

Mass is obtained by multiplying the number of moles by the molar mass.

$$
m=\mathscr{M}_{\mathrm{N}_{2}} n_{\mathrm{N}_{2}}+\mathscr{M}_{\mathrm{O}_{2}} n_{\mathrm{O}_{2}}+\mathscr{M}_{\mathrm{Ar}} n_{\mathrm{Ar}}+\mathscr{M}_{\mathrm{CO}_{2}} n_{\mathrm{CO}_{2}}
$$

Divide both sides by $n_{\text {total }}$. Since there's just a mole of dry air, $n_{\text {total }}=1 \mathrm{~mol}$.

$$
\begin{aligned}
\frac{m}{n_{\text {total }}} & =\frac{1}{n_{\text {total }}}\left(\mathscr{M}_{\mathrm{N}_{2}} n_{\mathrm{N}_{2}}+\mathscr{M}_{\mathrm{O}_{2}} n_{\mathrm{O}_{2}}+\mathscr{M}_{\mathrm{Ar}} n_{\mathrm{Ar}}+\mathscr{M}_{\mathrm{CO}_{2}} n_{\mathrm{CO}_{2}}\right) \\
\frac{m}{1 \mathrm{~mol}} & =\mathscr{M}_{\mathrm{N}_{2}}\left(\frac{n_{\mathrm{N}_{2}}}{n_{\text {total }}}\right)+\mathscr{M}_{\mathrm{O}_{2}}\left(\frac{n_{\mathrm{O}_{2}}}{n_{\text {total }}}\right)+\mathscr{M}_{\mathrm{Ar}}\left(\frac{n_{\mathrm{Ar}}}{n_{\text {total }}}\right)+\mathscr{M}_{\mathrm{CO}_{2}}\left(\frac{n_{\mathrm{CO}_{2}}}{n_{\text {total }}}\right) \\
& =\mathscr{M}_{\mathrm{N}_{2}} x_{\mathrm{N}_{2}}+\mathscr{M}_{\mathrm{O}_{2}} x_{\mathrm{O}_{2}}+\mathscr{M}_{\mathrm{Ar}} x_{\mathrm{Ar}}+\mathscr{M}_{\mathrm{CO}_{2}} x_{\mathrm{CO}_{2}}
\end{aligned}
$$

Suppose the mole fractions of the components of dry air at sea level are $x_{\mathrm{N}_{2}}=0.78, x_{\mathrm{O}_{2}}=0.21$, $x_{\mathrm{Ar}}=0.0095$, and $x_{\mathrm{CO}_{2}}=0.0005$.

$$
\begin{aligned}
\frac{m}{1 \mathrm{~mol}}= & \mathscr{M}_{\mathrm{N}_{2}}(0.78)+\mathscr{M}_{\mathrm{O}_{2}}(0.21)+\mathscr{M}_{\mathrm{Ar}}(0.0095)+\mathscr{M}_{\mathrm{CO}_{2}}(0.0005) \\
= & \left(2 \times 14.00674 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)(0.78)+\left(2 \times 15.9994 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)(0.21) \\
& \quad+\left(39.948 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)(0.0095)+\left[(12.0107+2 \times 15.9994) \frac{\mathrm{g}}{\mathrm{~mol}}\right](0.0005) \\
\approx & 28.97 \frac{\mathrm{~g}}{\mathrm{~mol}} .
\end{aligned}
$$

Therefore, multiplying both sides by 1 mole, the mass of a mole of dry air is

$$
m \approx 28.97 \mathrm{~g} .
$$

